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Walking naturally after spinal cord injury 
using a brain–spine interface
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A spinal cord injury interrupts the communication between the brain and the region 
of the spinal cord that produces walking, leading to paralysis1,2. Here, we restored this 
communication with a digital bridge between the brain and spinal cord that enabled 
an individual with chronic tetraplegia to stand and walk naturally in community 
settings. This brain–spine interface (BSI) consists of fully implanted recording and 
stimulation systems that establish a direct link between cortical signals3 and the 
analogue modulation of epidural electrical stimulation targeting the spinal cord 
regions involved in the production of walking4–6. A highly reliable BSI is calibrated 
within a few minutes. This reliability has remained stable over one year, including 
during independent use at home. The participant reports that the BSI enables natural 
control over the movements of his legs to stand, walk, climb stairs and even traverse 
complex terrains. Moreover, neurorehabilitation supported by the BSI improved 
neurological recovery. The participant regained the ability to walk with crutches 
overground even when the BSI was switched off. This digital bridge establishes a 
framework to restore natural control of movement after paralysis.

To walk, the brain delivers executive commands to the neurons located 
in the lumbosacral spinal cord7. Although the majority of spinal cord 
injuries do not directly damage these neurons, the disruption of 
descending pathways interrupts the brain-derived commands that 
are necessary for these neurons to produce walking8. The consequence 
is permanent paralysis.

We previously showed that epidural electrical stimulation target-
ing the individual dorsal root entry zones of the lumbosacral spinal 
cord enables the modulation of specific leg motor pools9–12. In turn, 
recruiting these dorsal root entry zones with preprogrammed spa-
tiotemporal sequences replicates the physiological activation of leg 
motor pools underlying standing and walking4,5,11,13,14. These stimulation 
sequences restored standing and basic walking in people with paralysis 
due to a spinal cord injury. However, this recovery required wearable 
motion sensors to detect motor intentions from residual movements 
or compensatory strategies to initiate the preprogrammed stimulation 
sequences5. Consequently, the control of walking was not perceived as 
completely natural. Moreover, the participants showed limited ability 
to adapt leg movements to changing terrain and volitional demands.

Here, we suggest that a digital bridge13,15–19 between the brain and spi-
nal cord would enable volitional control over the timing and amplitude 

of muscle activity, restoring more natural and adaptive control of 
standing and walking in people with paralysis due to spinal cord injury.

Digital bridge from brain to spinal cord
To establish this digital bridge, we integrated two fully implanted sys-
tems that enable recording of cortical activity and stimulation of the 
lumbosacral spinal cord wirelessly and in real time (Fig. 1a).

To monitor electrocorticographic (ECoG) signals from the sensori-
motor cortex, we leveraged the WIMAGINE technology3,20. WIMAGINE 
implants consist of an 8-by-8 grid of 64 electrodes (4 mm × 4.5 mm 
pitch in anteroposterior and mediolateral axes, respectively) and 
recording electronics that are embedded within a 50 mm diameter, 
circular-shaped titanium case that has the same thickness as the skull. 
The geometry of the system favours close and stable contact between 
the electrodes and the dura mater, and renders the devices invisible 
once implanted within the skull.

Two external antennae are embedded within a personalized headset 
that ensures reliable coupling with the implants. The first antenna 
powers the implanted electronics through inductive coupling (high fre-
quency, 13.56 MHz), whereas the second, ultrahigh frequency antenna 
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(UHF, 402–405 MHz) transfers ECoG signals in real time to a portable 
base station and processing unit, which generates online predictions 
of motor intentions on the basis of these signals (Extended Data Fig. 1).

The decoded motor intentions are then converted into stimulation 
commands that are transferred to tailored software running on the 
same processing unit.

These commands are delivered to the ACTIVA RC implantable pulse 
generator (Fig. 1a), which is commonly used to deliver deep brain stimu-
lation in patients with Parkinson’s disease. We upgraded7 this implant 
with wireless communication modules that enabled real-time adjust-
ment over the location and timing of epidural electrical stimulation 
with a latency of about 100 ms (Extended Data Fig. 1).

Electrical currents are then delivered to the targeted dorsal root 
entry zones using the Specify 5-6-5 implantable paddle lead, which 
consists of an array incorporating 16 electrodes.

This integrated chain of hardware and software established a wireless 
digital bridge between the brain and the spinal cord: a brain–spine inter-
face (BSI) that converts cortical activity into the analogue modulation 
of epidural electrical stimulation programs to tune lower limb muscle 
activation, and thus regain standing and walking after paralysis due to 
a spinal cord injury (Supplementary Video 1).

Neurosurgical implantation of the BSI
In the context of the Stimulation Movement Overground (STIMO)-BSI 
clinical trial (clinicaltrials.gov, NCT04632290), we enroled a 38-year-old 
male who had sustained an incomplete cervical (C5/C6) spinal cord 
injury during a biking accident ten years before. He had previously par-
ticipated in the STIMO clinical trial (clinicaltrials.gov, NCT02936453), 
which involved a five-month neurorehabilitation programme sup-
ported by targeted epidural electrical stimulation of the spinal cord4,5. 
This programme enabled him to regain the ability to step with the help 
of a front-wheel walker. Despite continued use of the stimulation at 
home, for approximately three years, he had reached a neurological 
recovery plateau, which motivated him to enrol in STIMO-BSI.

To guide the implantation of the BSI, we developed pre-operative 
planning procedures that enabled us to optimize the positioning of 
the recording and stimulation implants over the brain and spinal cord.

The BSI requires the detection of neural features related to the 
intention to move the left and right lower limbs. To identify the corti-
cal regions most responsive to the attempt to move each joint of the 
lower limbs, we acquired anatomical and functional imaging data based 
on computerized tomography and magnetoencephalography (Fig. 1b). 
These acquisitions identified the regions of the cerebral cortex that 
responded more robustly to the intention to move the left and right 
lower limbs. We integrated this information with anatomical con-
straints, to define the optimal positioning of the two ECoG record-
ing implants that aim to decode left and right lower limb movements. 
The location of both implants was uploaded onto a neuronavigation 
system to establish the pre-operative planning of the neurosurgical 
intervention.

Under general anaesthesia, a bicoronal incision of the scalp was per-
formed to enable two circular-shaped craniotomies over the planned 
locations of the left and right hemispheres, using a tailor-made circular 
trephine that matched the diameter of the implants. We then replaced 
the bone flaps with the two implantable recording devices, before 
closing the scalp.

The paddle lead was positioned over the dorsal root entry zones of 
the lumbar spinal cord used during the STIMO clinical trial. The optimal 
position of the lead was identified using a personalized model of the spine 
elaborated from high-resolution structural imaging5 (Fig. 1c). The final 
location was optimized intra-operatively on the basis of electrophysi-
ological recordings4,5. The implantable pulse generator, which was con-
nected to the lead, was inserted into an abdominal subcutaneous pocket.

The participant was discharged 24 h after each neurosurgical inter-
vention.

Setup of cortical and spinal implants
The calibration of the BSI required two previous independent pro-
cedures to select the features of ECoG recordings that discriminate 
the intention to move, and to configure stimulation programs that 
modulate specific ensembles of lower limb muscles.

The first procedure consisted of extracting the spatial, spectral 
and temporal features of ECoG signals that were linked to the inten-
tion to mobilize each joint of both lower limbs. For this purpose, the 

c

Ve
rt

eb
ra

e

T10

L1

D
or

sa
l r

oo
t

en
tr

y 
zo

ne
s

S
p

in
al

 c
or

d

Calculated optimal 
localization

16
 e

le
ct

rr
od

es
 p

ad
d

le
 le

ad
ta

rg
et

in
g 

d
or

sa
l r

oo
ts

 e
nt

ry
 z

on
es

Postoperative localization
Magnetic resonance 
imaging and computed 
tomography scan

Sagittal

Ve
rt

eb
ra

e

T11 T11

T12

L1

L1

S1

S
p

in
al

 
se

gm
en

ts

M1
S1

M1

S1

M1
S1

M1

S1

Axial

L R

b Magnetoencephalography imagery
(right hip �exion attempt)

Anatomical
localization

Postoperative localization

CoronalAxial Coronal Axial

Cortical
implants

L RL RL R L R
Activated

area

Lesion

Electrocortico-
graphy 

Targeted
epidural
electrical
stimulation

Selective 
activation
of muscles

R
ec

or
d

in
g

P
ro

ce
ss

in
g

S
tim

ul
at

io
n

a

Wearable processing unit
Receive neural data
Extract spatial, temporal and 
spectral features to predict 
motor intentions
Send updated stimulation 
commands

Implantable pulse generator

Paddle lead incorporating
16 electrodes

Cortical implants incorporating 2 × 64 channels

Fig. 1 | Design, technology and implantation of the BSI. a, Two cortical 
implants composed of 64 electrodes are positioned epidurally over the 
sensorimotor cortex to collect ECoG signals. A processing unit predicts motor 
intentions and translates these predictions into the modulation of epidural 
electrical stimulation programs targeting the dorsal root entry zones of the 
lumbosacral spinal cord. Stimulations are delivered by an implantable pulse 

generator connected to a 16-electrode paddle lead. b, Images reporting the 
pre-operative planning of cortical implant locations, and postoperative 
confirmation. L, left; R, right. c, Personalized computational model predicting 
the optimal localization of the paddle lead to target the dorsal root entry zones 
associated with lower limb muscles, and postoperative confirmation.

Q11

https://clinicaltrials.gov/ct2/show/NCT04632290
https://clinicaltrials.gov/ct2/show/NCT02936453


Nature | www.nature.com | 3

participant was asked to attempt hip, knee and ankle movements of 
the left and right sides in a seated position, during which ECoG signals 
were recorded concurrently. This mapping enabled the identifica-
tion of the electrodes, spectral features and temporal windows that 
captured the larger amount of movement-related information4,21–24 
(Fig. 2a and Extended Data Fig. 2). The electrodes that measured 
neural signals correlating with leg movements were located on the 
most medial aspect of the implant, rostral to the central sulcus, as 
expected on the basis of pre-operative magnetoencephalographic 
recordings. The spatial distribution of these electrodes followed a 
somatotopy that enabled the accurate discrimination of hip, knee and 
ankle movements (Extended Data Fig. 2c). On the other hand, upper 
limb-related movements coincided with the modulation of ECoG 
signals measured through electrodes located on the lateral aspect of 
the implant (Extended Data Fig. 2f). Movement-related information 
was contained over the entire range of beta and gamma frequency 
bands of the ECoG signals (Fig. 2a and Extended Data Fig. 2g). This 

procedure enabled us to configure the implants with optimal features 
to enable the participant to operate the BSI (Extended Data Fig. 2f,g).

The second procedure consisted of configuring stimulation pro-
grams (Fig. 2b). Epidural electrical stimulation of the spinal cord can 
modulate specific ensembles of motor pools through the recruitment 
of the dorsal root entry zones projecting to the spinal cord regions 
wherein these motor pools reside9,25. In turn, optimized configurations 
of anodes and cathodes can steer electric fields towards specific subsets 
of dorsal root entry zones to modulate well-defined ensembles of motor 
neuron pools5,9,25. This physiological principle enables the regulation 
of extension and flexion movements from each joint. We leveraged this 
principle to configure a library of targeted epidural electrical stimula-
tion programs that mobilized the hip, knee and ankle joints from both 
sides. Concretely, we configured combinations of anodes and cathodes, 
stimulation frequencies and amplitudes to steer electrical currents to 
achieve gradual control over the activity of the targeted muscle groups 
(Extended Data Fig. 2b–d).
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Adaptive online calibration of the BSI
We then leveraged the configurations of cortical and spinal implants 
to calibrate the BSI on the basis of a recursive, exponentially weighted 
Aksenova/Markov-switching multilinear algorithm that linked ECoG 
signals to the control of epidural electrical stimulation parameters 
(Extended Data Fig. 1).

The algorithm was designed to generate two separate predictions. 
First, a gating model calculated the probability of the intention to move 
a specific joint. Second, an independent multilinear model predicted 
the amplitude and direction of the intended movement. The adaptive 
properties of the algorithm enabled online, incremental parametri-
zation of the models throughout the period of calibration. A hidden 
Markov model ensured the stability and robustness of the predictions26.

We then translated the predictions of the algorithm into an analogue 
controller that adjusted the amplitude of joint-specific stimulation 
commands. These updated commands were delivered to the implant-
able pulse generator every 300 ms.

As early as the first session after neurosurgical intervention, the 
algorithm calibrated a BSI that enabled the participant to control the 
relative flexion of the left and right hips of an avatar projected on a 
screen (Supplementary Video 2). We then integrated the analogue 
control over the stimulation amplitude to the algorithm. From a lying 
position, within less than two minutes the participant was able to con-
trol the activity of hip muscles to generate a torque with an accuracy 
of 97% (Fig. 2c).

We then expanded this BSI framework to enable the participant to 
control the relative amplitude of hip, knee and ankle joints bilater-
ally along with the resting state, amounting to a total of seven states. 
Using this proportional BSI combining seven states, the participant 
achieved gradual control over the movement of each joint bilaterally 
with an accuracy of 74 ± 7%, whereas the chance level was limited to 14% 
(Fig. 2d,e). The latency of the decoder was as low as 1.1 s (±0.15 s s.e.m.)  
for the seven states.

These early sessions validated the procedure for the rapid, robust 
and accurate calibration of a BSI operating over multiple dimensions.

Immediate recovery of natural walking
We next asked whether this procedure supports the calibration of a 
BSI that restores natural control of walking.

Walking involves well-defined sequences of muscle activation pat-
terns that support weight acceptance, propulsion and swing of the left 
and right lower limbs. These sequences coincide with the activation of 
motor pools located within well-segregated regions of the lumbosacral 
spinal cord4,27. Therefore, we selected the stimulation programs within 
the library that targeted muscles associated with weight acceptance, 
propulsion and swing functions, and linked these programs to decoding 
probabilities. We calibrated the BSI to enable the participant to control 
the relative amplitude of stimulation programs for weight acceptance 
and swing functions.

We first tested this BSI during voluntary elevations of the foot while 
standing. After only 5 min of calibration, the BSI supported continu-
ous control over the activity of hip flexor muscles, which enabled the 
participant to achieve a fivefold increase in muscle activity compared 
to attempts without the BSI (Fig. 3a).

We provided the same configuration to support walking with 
crutches. The BSI enabled continuous, intuitive and robust control of 
walking (Fig. 3b). When the BSI was turned off, the participant instantly 
lost the ability to perform any step, despite detected attempts to walk 
from the modulation of cortical activity. Walking resumed as soon as the 
BSI was turned back on. The participant was able to decide whether to 
initiate stepping, walk continuously, stop or stand quietly without the 
detection of false-positives that would impair standing performance 
(Extended Data Fig. 3). Indeed, Berg Balance Scale assessments revealed 

that the BSI did not impair, and even slightly improved, overall balance 
abilities (Extended Data Fig. 3c).

The participant reported that the BSI enabled a natural control over 
his movements during walking (Supplementary Video 2). We aimed to 
capture this subjective perception with quantified outcomes. For this 
purpose, we applied a principal component analysis to whole-body kin-
ematics and muscle activity collected during walking on a treadmill with 
the BSI or with the same stimulation programs controlled in a closed 
loop on the basis of motion sensors attached to the feet. Compared to 
stimulation alone, the BSI enabled walking with gait features that were 
markedly closer to those quantified in healthy individuals (Extended 
Data Fig. 4a). The BSI ensured a continuous link between the intended 
movement and the modulation of stimulation protocols, which trans-
lated into the ability to walk overground independently with crutches. 
When the intended movements were detected from the motion sensors, 
the participant reported a frequent temporal mismatch between the 
detections and his intentions, which impaired his ability to walk under 
these conditions (Extended Data Fig. 4b).

Navigation over complex terrain
We next aimed to demonstrate that the BSI enabled an intuitive and 
natural control over complex activities of daily living that were not 
possible without the BSI.

When the participant enroled in STIMO, seven years after his acci-
dent, he was not able to walk independently. Completion of this clinical 
trial enabled him to regain basic walking when stimulation was turned 
on, albeit that this recovery required compensatory strategies to trigger 
the sequences of stimulation based on heel elevations. He also recov-
ered partial mobility without stimulation. However, he experienced 
difficulties transitioning from standing to walking and stopping, and 
could only walk over flat surfaces. Moreover, he was not able to adjust 
lower limb movements to progress over ramps, overcome obstacles or 
climb up staircases—as is necessary to support mobility in everyday life.

To demonstrate that the BSI remedied these limitations, we designed 
a succession of models that emulated the conditions underlying these 
activities of daily living.

We first asked whether the participant was able to walk on steep ter-
rain requiring adaptive modulation of the amplitude of muscle activity. 
With the BSI, the participant climbed up and down a steep ramp with 
ease, performing this task two times faster than without stimulation. 
The BSI also enabled high step clearance, as necessary to climb over 
a succession of stairs, negotiate obstacles and traverse changing ter-
rains (Extended Data Fig. 4c,d). All these tasks were performed with 
the same BSI configuration, which proved highly reliable to support 
a broad variety of tasks with widely different constraints (Extended 
Data Fig. 4c,d).

Long-term stability of the BSI
We next sought to assess the stability of the BSI. For this purpose, we 
quantified the stability of cortical signals and decoders over time, and 
the need to adjust stimulation programs.

After a transitory one-month period, during which cortical signals 
exhibited modest changes in the spectral content of the different 
frequency bands, ECoG signals remained stable over the following 
months (Extended Data Fig. 5a). The decrease in the spectral power 
was limited to 0.03 dB per day on average. This stability enabled 
robust performance. For example, we found that the same decoder 
enabled the participant to achieve gradual control over six joints 
despite a two-month interval between both sessions (Extended 
Data Fig. 6). We leveraged this robustness during neurorehabilita-
tion, as we only recalibrated the BSI when deemed necessary by the 
participant and/or physiotherapists to promote the best possible 
functional performance. Despite these recalibrations, the features of 
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the decoders remained remarkably stable over time (Extended Data 
Fig. 5b). Indeed, signal quality and decoding accuracy during walking 
has remained globally unchanged over nearly one year of use (Fig. 3f 
and Extended Data Fig. 5d). Whereas cortical features remained stable 
over time, we detected a progressive reinforcement of their modula-
tion depth, which revealed gradual improvements in the ability of the 

participant to modulate his cortical activity when operating the BSI  
(Extended Data Fig. 5e).

The library of stimulation programs showed the same stability. 
The optimal range of stimulation amplitudes was dependent on the 
specific configuration of electrodes and targeted muscles (Extended 
Data Fig. 5c). However, these ranges of stimulation amplitudes have 
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the mean values for these measurements. (n = 3 attempts per condition, 
unpaired one-tailed t-test, ***P < 0.001.) b, Chronophotography during walking 
with the BSI turned on, off and then on again. Note the two decoded attempts 
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e, Chronophotography of standing (voluntary pause) and walking with the  
BSI outdoors. The spectrogram, probabilities of left and right steps and 
modulation of stimulation amplitudes illustrate the robustness of the 
performance and absence of false-positive detections during the voluntary 
pause. f, Plots report the probability of right hip flexions over consecutive 
steps measured during the first session after the neurosurgical implantation 
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0.1 s.d., w = 1.71 ± 0.4 s s.d.) after the first activation of the BSI using updated 
models (Extended Data Fig. 5).
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remained stable over one year of use, and stimulation thresholds did 
not change over time.

Neurological recovery
The clinical study was designed to investigate whether neurorehabili-
tation supported by the BSI further improves neurological recovery 
(Fig. 4a). Before enroling in STIMO-BSI, the participant had completed 
the clinical trial STIMO, which enabled him to regain volitional control 
over previously paralysed muscles and to improve his standing and 
walking functions. However, after three years of regular training with 
stimulation only, he had reached a plateau of recovery (Fig. 4d–f).

The participant completed 40 sessions of neurorehabilitation 
(Fig. 4b). which involved walking with BSI, single-joint movements with 

BSI, balance with BSI and standard physiotherapy. Because impairments 
were more pronounced in hip flexor muscles, we primarily focused 
the training exercises and BSI configurations on the control of these 
muscles.

This neurorehabilitation programme mediated pronounced 
improvement in the volitional control of hip flexor muscles and asso-
ciated hip flexion movements without stimulation (Fig. 4c). This recov-
ery correlated with gains in sensory (4 points in light touch sensory 
score) and motor scores (Fig. 4d), and enhanced standing and walking 
capacities that were captured in an increase in WISCI II scores from 6 
before STIMO to 16 after STIMO-BSI (Fig. 4e). Concretely, the partici-
pant exhibited improvements in all the conventional clinical assess-
ments, such as the six-minute walk test, weight-bearing capacities, 
timed up and go, Berg Balance Scale and walking quality assessed using 
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the observational gait analysis scale28 by physiotherapists blinded to 
the study (Fig. 4d–h and Extended Data Table 3). These improvements 
without stimulation translated into a meaningful increase in quality 
of life, such as walking independently around the house, transiting in 
and out of a car or drinking a beverage with friends standing at a bar 
(Supplementary Video 3).

Integration of the BSI in daily life
The BSI enhanced the standing and walking capacities of the partici-
pant, which compelled us to develop a BSI framework for independent 
use at home.

We designed a system that could be operated by the participant 
without any assistance. This system includes a walker equipped with an 
integrated case that embeds all the components of the BSI (Extended 
Data Fig. 7). A tactile-based interface enables the participant to interact 
with the tailored software to launch an activity, verify the placement 
of the headset and adjust the minimum and maximum amplitudes of 
stimulation programs. The configuration of the hardware and soft-
ware is completed with minimal user inputs within less than 5 min, 
after which the participant can leverage the BSI for neurorehabilitation 
or to support activities of daily living (Supplementary Video 4). The  
participant used the system regularly over the course of 7 months with 
stable decoding performance (Extended Data Fig. 7c). This home use 
translated into a broad increase in the perceived benefits by the partici-
pant, as quantified by the Psychosocial Impact of Assistive Devices Scale 
(PIADS) questionnaire (Extended Data Table 4). Security, skilfulness 
and the ability to participate were ranked with the maximum possible 
gains in this questionnaire.

Discussion
We conceived a wireless, digital bridge between the brain and spinal 
cord that restored natural control over lower limb movements to stand 
and walk on complex terrains after paralysis due to a spinal cord injury. 
Moreover, neurorehabilitation mediated neurological improvements 
that persisted even when the bridge was switched off.

The validation of this digital bridge was restricted to a single indi-
vidual with severe but partial damage of the spinal cord, and it therefore 
remains unclear whether the BSI will be applicable to other injury loca-
tions and severities. However, several observations suggest that this 
approach will be applicable to a broad population of individuals with 
paralysis. First, the physiological principles underlying targeted epi-
dural electrical stimulation of the spinal cord have now been validated 
in nine out nine treated individuals with incomplete4 and complete5 
injuries6. Second, we developed procedures that supported straightfor-
ward, rapid and stable calibration of the link between cortical activity 
and stimulation programs, enabling the participant to operate the 
BSI at home without supervision. Third, a comparable robustness 
and stability of this computational and technological brain decoding 
framework has now been observed in two additional individuals with 
tetraplegia3,26,29. Although the previous experience of the participant 
with the stimulation accelerated the configuration of the BSI, we do not 
anticipate major impediments to implement a BSI in new individuals. 
Indeed, we were able to configure stimulation programs that restored 
stepping within one day in three participants with complete sensori-
motor paralysis5.

The delivery of epidural electrical stimulation over the lumbar spinal 
cord has enabled many individuals with spinal cord injury to regain 
adaptive control over the activity of otherwise paralysed muscles. 
This recovery has been documented in various independent studies, 
including in participants with complete sensorimotor paralysis5,6,30–34. 
These observations indicate that anatomically intact, yet functionally 
silent pathways from the brain can modulate the impact of epidural 
electrical stimulation on the activity of the spinal cord below the injury. 

However, these studies also acknowledge a series of limitations. First, 
stimulation parameters must be fine-tuned on the basis of the targeted 
muscle or desired motor function. Second, the onset of the stimula-
tion must be precisely synchronized with the motor intention. Third, 
finely graded control over the activity of muscles requires modulating 
the amplitude of the stimulation. The BSI remedies these three limita-
tions. In this scenario, the residual and prosthetic pathways converge 
on the same neurons below the injury, enabling graded and sustained 
control over the activity of muscles. This cooperation probably plays an 
essential role in the reorganization of neuronal pathways that mediate 
neurological recovery in response to neurorehabilitation with the BSI. 
Comparable observations have been reported when electroencephalo-
graphic signals were coupled to an exoskeleton or functional electrical 
stimulation of muscles during gait rehabilitation in people with spinal 
cord injury22,24,35. However, the poor quality of electroencephalographic 
signals in mobile conditions, combined with the impracticality of this 
technological framework, are an impediment to the clinical implemen-
tation of these non-invasive strategies.

Neurorehabilitation supported by the digital bridge mediated addi-
tional neurological improvements after three years of stable perfor-
mance, despite continued use of epidural electrical stimulation at 
home. These improvements primarily took place in the control of hip 
muscles, which was the main target of brain-controlled stimulation 
programs during neurorehabilitation. Although focused on one mus-
cle group, this neurological recovery translated into the ability to lift 
the leg against gravity without stimulation. This recovery supported 
independent walking with crutches.

In preclinical models, neurorehabilitation supported by a digital bridge 
triggered superior recovery compared to epidural electrical stimulation 
alone15. Brain-controlled neuromuscular stimulation also mediated dura-
ble functional improvements of the engaged muscles after stroke36 and 
spinal cord injury22,24,37. As the participant had previously reached a plateau 
of recovery after intensive rehabilitation using spinal cord stimulation 
alone, it is reasonable to assume that the BSI triggered a reorganization 
of neuronal pathways that was responsible for the additional neurologi-
cal recovery. These results suggest that establishing a continuous link 
between the brain and spinal cord promotes the reorganization of residual 
neuronal pathways that link these two regions under normal physiological 
conditions38–41. Expanding the concept of a digital bridge to the cervical 
spinal cord may also restore arm and hand movements after spinal cord 
injury42 and stroke43. However, it is important to appreciate that the rela-
tive amount of neurological recovery will necessarily correlate with the  
severity of the lesion.

Scaling up this digital bridge will require several developments. 
First, the practical utilization of the cortical implant will necessitate 
miniaturization of the base station, computing unit and unnoticeable 
antennae. Compressive sensing and dynamic adjustment of sampled 
electrodes and features could further reduce cortical device footprint. 
Second, the spinal implant must be endowed with ultrafast communica-
tion capabilities, versatile stimulation parameters and direct wireless 
control from the wearable computing unit. Finally, the cortical and 
spinal implants could be controlled by a single low-power integrated 
circuit embedding a neuromorphic processor with self-calibration 
capability that autonomously translates cortical activity into updates 
of stimulation programs. Although these developments require time 
and resources, we do not anticipate technical hurdles to realize this 
transition.

The concept of a digital bridge between the brain and spinal cord 
augurs a new era in the treatment of motor deficits due to neurologi-
cal disorders.
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Methods

Study design and participant
All experiments were carried out as part of the ongoing clinical fea-
sibility study STIMO-BSI (‘Brain-controlled Spinal Cord Stimulation 
in Patients With Spinal Cord Injury’), which investigates the safety 
and preliminary efficacy of brain-controlled spinal cord stimulation 
after spinal cord injury (clinicaltrials.gov, NCT04632290). This study 
was approved by the Swiss authorities (Swissethics protocol number 
CER-VD2020-01814, Swissmedic 10000766, EUDAMED CIV-20-07-
034126) and was conducted in accordance with the Declaration of 
Helsinki. The participant signed a written informed consent before 
participation. All surgical and experimental procedures were per-
formed at the Lausanne University Hospital (CHUV) except for the 
magnetoencephalography experiments, which were performed at 
the CEA Clinatec facilities (Grenoble). The study involved functional 
assessments before implantation of the cortical devices, the neuro-
surgical procedure, a 6 week period during which various decoders 
were calibrated and spinal cord stimulation libraries were established, 
and a 15 week period of neurorehabilitation with physiotherapists. 
which amounted to a total of 40 sessions lasting one to three hours. 
The neurorehabilitation programme was personalized on the basis of 
the participant’s improvements. At the end of the neurorehabilitation 
period, the participant exited the active participation phase of the 
clinical trial, and was offered the opportunity to continue using the BSI 
at home. The participant is currently being followed up on a regular 
basis by the study team until the end of the three-year study extension 
phase of home use of the system.

Before enrolment in the STIMO-BSI study, the participant had com-
pleted the clinical protocol STIMO (‘STIMO: Epidural Electrical Simula-
tion (EES) With Robot-assisted Rehabilitation in Patients With Spinal 
Cord Injury’, NCT02936453) during which a spinal cord stimulation 
system had been implanted and he had completed a five-month inten-
sive neurorehabilitation programme supported by EES, followed by a 
two-year period of independent use at home.

Additionally, one year before joining the STIMO-BSI trial, the partici-
pant underwent a surgical procedure with: (1) talonavicular arthrodesis, 
transfer of the toe extensors to the musculus peroneus tertius; and 
transfer of the musculus tibialis posterior to the musculus tibialis ante-
rior and musculus extensor digitorum longus; and (2) tenotomy of all 
long toe flexors and interphalangeal arthrodesis of the hallux. Both were 
performed bilaterally and could have impacted the reliability of the long 
toe extensor motor scores before and during the study due to change in 
spasticity and mechanical properties of the joint. Therefore, we decided 
not to report the long toe extensor motor score in our analysis.

Pre-operative magnetoencephalography
Before entering the STIMO-BSI clinical trial, the participant was already 
implanted with a spinal cord system that was not MRI compatible. 
Therefore, we were not able to perform anatomical or functional MRI 
of the brain. Magnetoencephalography (MEG) is less sensitive to ana-
tomical imprecisions for source reconstruction compared to electro-
encephalography (EEG)44. Therefore, we decided to use MEG to map 
the activity correlated to the limb motor intentions.

Before the neurosurgical procedure to place the cortical implants, 
MEG activity was measured in a magnetically shielded room using 
a 306-channel whole-scalp array (204 planar gradiometers and 102 
magnetometers) from the Elekta Neuromag system (Elekta Neuromag). 
ECG and EOG were recorded simultaneously. The recording sampling 
rate was 1,000 Hz. Continuous head position indicator signals were 
recorded during the experiments to track the head movements of the 
subject. Before experimentation, a three-dimensional (3D) digitization 
system (Isotrak II, Polhemus) was used to localize anatomical fiducial 
points for later coregistration with head computerized tomography 
(CT). Temporal signal space separation (tSSS) was applied to reduce 
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the noise in the MEG data using MaxFilter v.3.0 software (Elekta). First, 
manual review of raw data enabled the marking of bad channels. Sec-
ond, the tSSS filter was applied using head movement compensation 
and automatic bad channel correction. The main parameters were 
kept to default (tSSS correlation threshold of 0.98, orders of expansion 
for ‘in’ and ‘out’ components of signal set to 8 and 3, respectively, and 
a 10 s time buffer). Notch filtering at 50 Hz and harmonics (100 Hz, 
150 Hz, 200 Hz and 250 Hz) were also applied to remove power line 
contamination. Stereotypical artefacts (cardiac, ocular) were identified 
by independent components analysis using MNE-Python software45 
and rejected on visual screening (Infomax method, calculated sepa-
rately for magnetometers and gradiometers using 64 components). 
The head, skull and cortex geometries were calculated from CT scan 
using the MRI segmentation routine included in the Brainstorm soft-
ware46, followed by calculation of the head model using the overlapping 
spheres method. A 3D inversion kernel was calculated using Brainstorm 
implementation of the Minimum Norm Imaging method with default 
parameters. It enabled the reconstruction of cleaned raw data at brain 
source level for the subsequent calculations. Finally, the MSA method47 
was used to reconstruct the brain activity related to wrist, hip and ankle 
motor attempts. To estimate task-specific brain activations, MSA uses 
cross-validated, shifted, multiple Pearson correlation, calculated from 
the time–frequency transformed brain signal and the binary signal 
of stimuli. 3D snapshots of these activations at their maximum were 
exported as DICOM in the original CT scan frame of reference for use 
in neuronavigation tools. For rendering, we manually segmented the 
brain from the patient pre-operative CT scan using Slicer (slicer.org) 
and used Blender for rendering. We recoloured the MEG signal with a 
red colour ramp then superposed it with the 3D render of the brain.

Electrocorticography WIMAGINE devices
The WIMAGINE implantable recording system was designed for bilat-
eral epidural implantation over the sensorimotor cortex20. Electronic 
components were housed in a titanium case (50 mm diameter, 7–12 mm 
thick and a convex external face). An array of 64 platinum–iridium 
(90:10) recording electrodes for epidural ECoG (2 mm in diameter, 
4–4.5 mm pitch) and five reference electrodes were located on the 
flat inner face of the device. The ECoG data were recorded thanks to 
an application-specific integrated circuit48 that enabled multi-channel 
amplification and digitalization with an input referred noise of less 
than 0.7 µV root mean square in the 0.5 Hz–300 Hz range. Data 
were radio-emitted through an ultrahigh frequency antenna (402–
405 MHz). Power was supplied remotely through a 13.56 MHz inductive 
high-frequency antenna. Both antennae were embedded in a silicone 
flap extending on the subcutaneous space. To ensure signal stability 
at high frequency (586 Hz), with regard to the limited bandwidth, 32 
contacts out of the 64 were used for each implant. The wireless con-
nection used two external antennae held in front of the recorders by a 
custom-designed headset. The technical specifications of the device 
are reported in Extended Data Table 1.

Neurosurgical procedure
The surgery was performed under general anaesthesia. A neuronaviga-
tion station (StealthStation, Medtronic) was used to locate the centre 
of the craniotomies on each hemisphere. The anatomical and func-
tional information obtained from MEG and CT scan imaging enabled 
the selection of the entry points to maximize the coverage of the leg 
region of the sensorimotor cortex, while ensuring a similar margin 
from the sagittal sinus area. Following a coronal incision, two circular 
craniotomies of 5 cm in diameter were performed using a custom-made 
trephine. The bone flaps were removed to expose the dura mater. The 
two WIMAGINE implants were placed over the dura, and then carefully 
suspended and secured with non-resorbable sutures. The skin was then 
sutured over the implants. The participant was discharged the next day. 
The calibration phase was initiated after a rest period of two weeks.

https://clinicaltrials.gov/ct2/show/NCT04632290
https://clinicaltrials.gov/ct2/show/NCT02936453
https://www.slicer.org/
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Decoder architecture
ECoG data were collected from 32 channels per implant at an acquisi-
tion frequency of 586 Hz. The signals were band-pass filtered between 
1 Hz and 300 Hz. The data were streamed through the fieldtrip toolbox 
to a custom-made decoding software running in the Matlab Runtime 
Environment (Mathworks).

To decode the intention to perform lower limb movements, we 
implemented a variant of the recursive exponentially weighted 
Markov-switching multilinear model (REW-MSLM) algorithm that 
we had previously developed to decode upper limb movements26. 
REW-MSLM is a mixture of multilinear algorithms form experts. It con-
sists of a hidden Markov model (HMM) classifier, called ‘gate’, and a set 
of independent regression models, called ‘experts’. Each expert is gener-
ally dedicated to the control of a group of degrees of freedom, a specific 
limb or movement (for example, joint movement). The HMM-based 
classifier predicts the probability of such specific limb or movement 
activation (states) associated with a particular expert. The resulting 
decoder output results from soft mixing of expert predictions accord-
ing to estimated probabilities.

The gate HMM-based classifier predicts the state and assumes 
that the state sequence Z(t) follows a first-order Markov chain 
hypothesis. Consequently, the probability of a state at each time 
step depends on the combination of the previous state and the 
newly acquired ECoG data. The HMM-based classifier is composed 
of an emission and transition probability model. At each time step, 
the emission probability is estimated from the observations of 
ECoG signals independently from the sequence of the state. In the 
current study, a linear discriminative classifier was used for the 
emission probability model. For K states/classes (in our case, K = 7 
states, rest, hip, knee, ankle, bilaterally), the classifier output was  
computed as follows:

d t β X t b( ) = ( ) + ,gate gate gate

d t d t d t( ) = ( ( ), …, ( )) .K
gate

1
emission emission

Here βgate and bgate are matrices of coefficients of linear discrimina-
tive classifiers. Then, the emission probability vector α t( )=emission  
α t α t( ( ), …, ( ))K1

emission emission  is obtained from the classifier output dgate(t) 
through the softmax normalization:

α t( ) =
e

∑ e
.k

d t

i
K d t

emission
( )

=1
( )

k

i

gate

gate

Finally, the emission probabilities are weighted by the HMM state 
transition probabilities matrix T, where T is a K-by-K matrix with coef-
ficients defined by the cumulative number of transitions between cued 
states.

α t
α t T α t
α t T α t

(̂ ) =
( ) × . (̂ − 1)
( ) × . (̂ − 1)

.
emission

emission

The most probable state Z tˆ ( )  sequence may be issued by maximiz-
ing the state probability α tˆ( )  at step t. The state probability vector may 
be used to mix the decoder experts, or may be considered as one of 
the decoder outputs.

For experts, a multilinear regression model was used:

φ t β X t b( ) = ( ) + ,k k k
expert expert

where β k
expert  and bk

expert  summarize coefficients of kth expert, k ∈  
[1, K]. Finally, the mixture of expert output U(t) is computed from expert 
predictions φk(t) and estimated probabilities α tˆ ( )k  from the following 
equation: U t φ t α t α t( ) = ( ) × ˆ ( ) × ∏ (1 − ˆ ( ))k k k i k i≠ .

Q16

Q17

From this decoder architecture, we implemented two different con-
trol models to drive epidural spinal cord stimulation.
(1) For six-joint control in static conditions, we implemented a mixture 

of expert predictions to enable the participant to achieve propor-
tional control over the amplitude of stimulation. U(t) contains the 
analogue prediction of the relative desired amplitude of joint move-
ment at any given time. The movement of each joint is linked to a 
specific stimulation protocol (electrode configuration, frequency 
and pulse width) defined in the library of stimulation programs  
(Extended Data Fig. 2b–d), whereas the predictions constituting U(t) 
are linearly rescaled into amplitude of stimulation (in mA) within a 
range of predefined values by the experimenter.

(2) For the control of standing and walking in dynamic conditions, we 
took into consideration that these activities do not require simultane-
ous control over the amplitude of left and right hip flexions,  
because left and right steps must not occur at the same time. Therefore, 
we removed the layer of mixture of experts, and instead implemented 
a control model that drives stimulation amplitudes from the gate 
model output. This control model avoids the simultaneous delivery 
of stimulation over all the joints. Consequently, the amplitude is only 
modified for one joint at a time. In turn, we used the maximum esti-
mated state probability α tmax( ˆ( )) to enable the participant to achieve 
proportional control over the amplitude of stimulation.

Iterative online decoder calibration
REW-MSLM is a closed-loop adaptive decoder. In parallel to the cur-
rent model use for predictions, the REW-MSLM decoders update 
their parameters on the basis of new incoming data, which enables 
the optimization of the parameters of the model in real time through-
out the calibration session26. The linear emission probability model 
and expert models were identified using a recursive exponentially 
weighted N-way partial least square (REW-NPLS) algorithm. This algo-
rithm was specifically designed for incremental and adaptive real-time 
multilinear decoder learning49. The transition matrix was identified 
by direct state transition counting during the calibration session. The 
resulting decoder was able to predict mental states as well as continu-
ous movements.

Input features X(t) were computed from the ECoG signals and then 
fed to the decoder. Epochs ranging from 200 to 500 ms of ECoG signals 
from the 64 electrodes were created to generate a 100 ms sliding win-
dow. The epochs were mapped to the temporal frequency space with 
complex continuous wavelet transform (CCWT). The wavelets declined 
from the Morlet mother wavelet are centred around specific frequen-
cies (2 5:5:100 125 150 200 Hz). The absolute value of the output of the 
CCWT was then decimated to obtain 2–5 points along the temporal 
modality, which defined the epoch. The prediction was computed every 
100 ms. During the experiments, the REW-MSLM algorithm recursively 
updated the experts and gate coefficients every 15 s. The training data 
consist of 15 s batches of input ECoG features associated to output 
movement features. The output features are generated according 
to specific tasks given to the participant to perform motor imagery, 
including desired mental state for the gate update and a desired con-
tinuous movement (if any) for the expert in charge update.

When creating a model from scratch, assistance from the system can 
be added to the decoder output. This enables the participant to have 
movements already performed, even though the decoder does not 
predict correctly. Assistance decreases progressively as the model is 
calibrated, to eventually leave the participant in full control.

Model update:
Step 1: accumulate raw data and labels dgate and φ over 15 s.
Step 2: compute the corresponding feature vector X(t).
Step 3: perform the partial least square regressions for the gating 

dgate and experts φ to update the coefficients (βgate, bgate, βexpert, bexpert).
Step 4: update the transition matrix by adding the number of transi-

tions. T(i, j) ≤ T(i, j) + sum((Z(t + 1),Z(t)) = (i, j)).
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Prediction computation:
Step 1: compute the linear predictions of gate and experts from the 

current coefficients.
Step 2: apply the exponential normalization and the HMM transi-

tion step.
Step 3: mix the prediction from the gating and expert model.

ECoG mapping procedure
To assess the spatial and spectral information in the ECoG signals to 
discriminate a specific task, we computed the linear regression weights 
associated with cued motor attempts. To map the features related 
to lower limb movements (hip, knee, ankle bilaterally) we recorded 
cortical signals during 57 (±6 s.e.m.) repetitions of each movement 
attempt cumulating 226 s (±25 s s.e.m.) during each state. The weights 
generated from this dataset were projected onto the spatial dimension 
for different frequency bands (0.5–10 Hz, 10–40 Hz, 40–100 Hz and 
100–200 Hz) or on the spectral dimension.

Epidural electrical stimulation
The implant to deliver epidural electrical stimulation (Extended Data 
Table 2) was composed of an ACTIVA RC implantable pulse generator 
(model 37612, Medtronic) that was interfaced with the Specify Surescan 
5-6-5 paddle lead (model 977C190, Medtronic). A dedicated firmware 
enabled real-time uploads of stimulation tables to control electrical 
stimulation waveforms5. The patient programmer (SPTM, model 09103) 
was carried within a belt to align its position with the implantable pulse 
generator. We developed a custom-built stimulation program5 that sent 
commands to the patient programmer through a Bluetooth/infrared 
wireless bridge. The stimulation program enabled the definition of 
stimulation configurations (cathodes and anodes) and parameters 
(pulse width, frequencies and amplitude ranges) by an expert user5. This 
chain of software and hardware enabled real-time control of stimulation 
protocols with a latency inferior to 150 ms (ref. 4).

Calibration of the library of stimulation programs
Electromyographic (EMG) activity was recorded bilaterally from the 
iliopsoas), rectus femoris, vastus lateralis, semitendinosus, tibialis ante-
rior, medial gastrocnemius and soleus muscles with wireless bipolar 
surface electrodes (Delsys Trigno). Each pair of electrodes was placed 
over the belly of the targeted muscle, aligned longitudinally to muscle 
fibres. Abrasive paste (Nuprep, 4Weaver) was used for skin preparation 
to reduce electrode–skin resistance and improve EMG signal quality. An 
additional pair of surface-EMG electrodes was placed over the spine, at 
the thoracolumbar junction, to detect stimulation artefacts, and thus 
align muscle responses to the onset of stimulation. Continuous EMG 
signals were sampled at 2 kHz and saved to a desktop computer. EMG 
signals were band-pass filtered between 20 and 450 Hz. Recruitment 
curves were performed with pulses of increasing stimulation ampli-
tudes, delivered every second. We implemented a grid search model 
to explore the different electrode configurations and frequencies to 
select the configurations of cathodes and anodes to achieve maxi-
mum selectivity in the recruitment of the targeted muscle groups4. The 
amplitude of muscle responses was normalized by z-scoring over all the 
configurations. For each period of stimulation, the average absolute 
value of z-score was computed. The z-score was then represented in 
a polar plot.

Decoder calibration procedure
During the calibration of the decoders, the participant received visual 
cues through a custom-made interface displaying the targeted state 
with or without the direction of movement. The cues were generated 
as a pseudo-random sequence with programmable duration (2/4 s per 
state) or manually by the experimenter. The decoding environment 
enabled visualization of the duration spent in each state as well as the 
number of transitions between states. Once the performance of the 

decoder was judged sufficient by the participant and experimenter, 
cueing was discontinued and the participant could use the model 
without further calibration. From day to day, models were updated 
when deemed necessary. The iterative nature of the implementation 
facilitated these updates. Typically, the model supporting control 
over left hip and right hip flexions during walking was trained on the 
basis of 30 repetitions of each active state, whereas the resting state 
was predicted from 3 min of ECoG data that were acquired while the 
participant was performing unspecific hand and trunk movements, as 
well as talking to ensure robustness of the predictions.

Decoding accuracy quantification
The accuracy of decoding predictions was quantified by computing 
the normalized cross-correlation between the decoded state Ẑ  and 
the cued state Z after delay compensation:

∑Z t
Z t τ Z tDecoding accuracy =

1
∑ ( )

( − ) ˆ ( ) ,
t t

where τ corresponds to the time at which the maximum of the 
cross-correlation between the cued state and the decoded state prob-
ability is reached.

Muscle response accuracy quantification
Accuracy of muscle responses was obtained by computing the normal-
ized cross-correlation between the decoded state Ẑ  and the thresh-
olded EMG envelope, which was obtained with T = 200 ms sliding 
window:

∫EMG(t) =
1
T

|zscore(emg(τ))|dτ > 1
t

t+T













∑ ∑t t Z tEMG accuracy = 1 EMG( ) EMG( ) ˆ( ).
t t

Stepping accuracy quantification
When walking freely, there was no cue to quantify the decoding accu-
racy. To provide a quantification, we profiled the probability curves 
that were decoded during walking, and analysed peak value and width 
of the probability curves associated with left and right hip flexions. We 
conducted this analysis during walking at different time points, from 
the first session to sessions that occurred nearly one year after the 
neurosurgical procedure to place the cortical implant. The mean peak 
of probabilities, as well as the mean half-width (±s.d.) were calculated 
for each time point.

ECoG spectrograms
To generate spectrograms of ECoG signals, we applied a continuous 
wavelet transform with a window of 500 ms and a step size of 100 ms. 
The difference between the averaged spectrograms from both implants 
was computed and normalized by applying z-scores over each frequency 
band. The colour maps of the normalized average spectrograms were 
scaled between −0.5 and 0.5 or between −0.5 and 1 for visualization.

ECoG signal stability
Signal stability was assessed by quantification of the signal power dur-
ing the resting state in the different frequency bands50. The participant 
was sitting in his wheelchair with eyes closed while ECoG signals were 
acquired over 2 min. For each session, a window of 90 s starting 20 s 
after the onset of recording was selected for analysis. The power spec-
trum density was estimated using Welch’s method. The root mean 
square was computed over the entire frequency band (0.5–292 Hz). 
The band power was measured for the following four frequency bands: 
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0.5–10 Hz, 10–40 Hz, 40–100 Hz and 100–200 Hz. To compensate for 
the different frequency bandwidths, the obtained band powers were 
normalized before being converted into dB. The signal-to-noise ratio 
was calculated for each band as the ratio of the band power versus the 
noise band power, which was estimated between 250–260 Hz due to 
the numerical filter. Root mean square, band power and signal-to-noise 
ratio were finally averaged across all the electrodes.

Feature reinforcement with time
We analysed the reinforcement of cortical features linked to hip flexion 
attempts by computing the median spectrograms around the flexion 
cues in four different time periods to gather 100 events per period 
(−2 s to +2 s around the event). For each electrode, we computed the 
standard deviation of the spectrograms over all frequencies during 
the 4 s surrounding the events. We performed a linear fit over the 64 
electrodes and four time periods.

Walking model stability assessment
To analyse the stability of the walking models, we applied a principal 
component analysis (PCA) over the coefficients of each gate (idle, left 
hip flexion, right hip flexion) for each model. The gate vectors were 
composed of (64 channels × 24 frequencies) coefficients by averaging 
the temporal dimension. The PCA was performed over (3 gate × 44 
models) samples spanning 4 months of use. Data were represented in 
the first three components of the PCA. We constructed an ellipsoid of 
1,600 data points representing the contour curve that corresponded 
to a standard deviation of 1.4 for a 3D Gaussian distribution with the 
covariance and the mean value of each state.

Quantitative gait analysis
EMG activity during walking was acquired bilaterally at 1,259 Hz using 
16-channel wireless sensors (Delsys Trigno) placed over the iliopsoas, 
rectus femoris, vastus lateralis), semitendinosus, tibialis anterior and 
medial gastrocnemius. Kinematic recordings were acquired using 
a 3D motion capture system (Vicon Motion Systems). A network of 
14 infrared cameras, which covered a 12 × 4 × 2.5 m3 workspace, was 
used to record the motion of markers attached to body landmarks. 
Data were acquired at a 100 Hz sampling rate using. A PCA was applied 
over a total of 26 kinematic and EMG parameters that were calculated 
for each gait cycle, as described previously4. The following param-
eters were included: step length, step height, knee height, knee angle 
and knee maximum angle, hip angle and hip maximum angle, limb 
angle, vastus lateralis activation, vastus lateralis stance activation, 
vastus lateralis swing activation, tibialis anterior activation, tibialis 
anterior stance activation, tibialis anterior swing activation, rectus 
femoris activation, rectus femoris stance activation, rectus femoris 
swing activation, iliopsoas activation, iliopsoas stance activation, 
iliopsoas swing activation, semitendinosus activation, semitendi-
nosus stance activation, semitendinosus swing activation, medial 
gastrocnemius activation, medial gastrocnemius stance activation, 
medial gastrocnemius swing activation. Data were quantified dur-
ing walking with the BSI and with closed control of stimulation based 
on motion sensors attached to the feet5. These data were compared 
to identical recordings obtained in healthy individuals. During over-
ground walking with crutches, stepping attempts were detected when 
the knee angle dropped below 135 degrees with at least 2 s between 
steps. Steps were considered as failed when the step length was  
lower than 10 cm.

Observational gait analysis
To analyse gait quality from video recordings, a panel of physiothera-
pists (n = 6), who were blind to experimental conditions and were not 
involved in STIMO or STIMO-BSI clinical trials, were asked to score 
different walking trials using items in a validated scoring sheet, which 
is described in Extended Data Table 3. This scoring sheet pooled items 

from the validated questionnaires G.A.I.T.28, SCI-FAI51, Tinetti Test52 
and ref. 53.

International Standards for Neurological Classification of 
Spinal Cord Injury
Neurological status was assessed by an experienced neurologist on the 
basis of the International Standards for Neurological Classification of 
Spinal Cord Injury (ISNCSCI), a comprehensive clinician-administered 
neurological examination of residual sensory and motor function quan-
tifying spinal cord injury severity.

Six-minute walk test
Endurance was assessed by the distance covered overground within six 
minutes with a standard four-wheel walker, but without any external 
assistance. This test was performed before and at the end of each period 
of neurorehabilitation of the STIMO and STIMO-BSI. Data were fitted 
with an exponential curve.

Ten-metre walk test
Walking speed was assessed by a timed ten-metre walk test without 
any external assistance. The participant was instructed to walk with 
the preferred assistive device as fast as he could.

Statistical analysis
Individual data points are represented on each figure. Measurements 
were taken from distinct samples, except for the observational gait 
analysis for which the expert physiotherapists were independently 
ranking the same videos. We used paired (when applicable) or unpaired 
one-tailed t-test, except as otherwise specified, with α = 0.05. P values 
are reported with ***P > 0.001, **P < 0.01 and *P < 0.05.

Device explantation
Due to a subcutaneous infection to Staphylococcus aureus at the loca-
tion of the cortical implant located on the right side, the principal inves-
tigator decided to explant the device 167 days after implantation. The 
second implant presented no sign of infection and remained in place, 
and fully functional. After recovery from the surgery and antibiotics 
treatment per os, neurorehabilitation and daily use could continue 
as planned by the protocol. Implantation of a new cortical implant is 
planned.

Ethics statement
The STIMO-BSI study was approved by the Swiss authorities (Swis-
sethics protocol number CER-VD2020-01814, Swissmedic 10000766, 
EUDAMED CIV-20-07-034126) and was conducted in accordance with 
the Declaration of Helsinki. The STIMO-BSI study is registered at Clin-
icalTrials.gov (NCT04632290). The STIMO study was approved by 
the Swiss authorities (Swissethics protocol number CER-VD PB_2016-
00886, Swissmedic 10000234, EUDAMED CIV-16-02-014664), reg-
istered at ClinicalTrials.gov (NCT02936453), and was conducted in 
accordance with the Declaration of Helsinki. The participant signed 
a written informed consent before to participation. Moreover, the 
participant gave his consent for the material depicting himself to 
appear in the contribution and to be published in the journal and 
associated works without limit on the duration of publication, in any  
form or medium.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Technological and computational design underlying 
the BSI. a, photographs reporting the geometry and features of the WIMAGINE 
implant, including 64 platinum-iridium (90:10) electrodes with 4 mm x 4.5 mm 
pitch (in antero-posterior and medio-lateral axes respectively). Two external 
antennas are embedded within the implant. The first antenna powers the 
implanted electronics through inductive coupling at high frequency (HF, 
13.56 MHz) while the second ultrahigh frequency antenna (UHF, 402-405 MHz) 
transfers the recorded signals outside the body. b, Two external antennas 
embedded in a personalized 3D-printed headset power the implant and 
recover the streamed signals that are then transferred to a base station. This 
base station manages the powering of the implants, synchronization and 
conditioning of the raw data. c, A decoding pipeline computes temporal, 
spectral and spatial features embedded in the ECoG signals related to the 
intention to move. These features are then uploaded into the decoding 
algorithm that decodes the attempts to move the lower limbs based on a 
tailored, recursive exponentially weighted Markov-switching multi-linear 

model algorithm15. This algorithm is a mixture of multilinear experts’ algorithm 
integrating a Hidden Markov Model (HMM) classifier, called gating, and a set of 
independent regression models, called experts. The gating classifier predicts 
the joint that is intended to be mobilized (i.e. hip, knee or ankle on each side) as 
well as resting state, while each expert is dedicated to predicting the direction 
and relative amplitude of the intended movement. When updating is allowed, 
every 15 s, the coefficients of both linear regressions (βgate, bgate, βexpert, bexpert) 
are updated through recursive partial least square along with the coefficients 
of the transition matrix T corresponding to the number of transitions between 
each states during this 15s period (i.e. 150 new transitions). To support the 
production of standing and walking, the outputs of the model are encoded into 
updates of joint-specific stimulation programs that are constrained within pre-
established functional ranges of amplitudes. d, A tailored, medical-grade 
software sends these updates to the implanted pulse generator through a chain 
of wireless communication systems, eventually delivering the stimulation 
through a paddle array implanted epidurally over the lumbosacral spinal cord.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Calibration of the BSI. a, Post-operative localization of 
the cortical implants over the segmented brain of the participant that confirms 
the appropriate positioning of the 64-electrode grids over the activated 
regions of the primary motor cortex responding to attempted lower limb 
movements, as measured during functional magnetoencephalographic 
recordings. b, Post-operative localization of the paddle lead over the 
lumbosacral spinal cord to target lower limb muscles. c, Projection of linear 
regression weights associated with different lower limb movements (depicted 
on body schemes) onto the location of the implants, revealing the spatial 
segregation of movement-specific features. d, Electromyographic activity 
recorded from several lower limb muscles following a burst of epidural 
electrical stimulation using the more selective electrode configurations 
(schemes) and parameters (reported) translated into polar plots reporting the 

amplitude of muscle responses. e, Spatial distribution of linear regression 
weights associated with upper versus lower limb movements over the grid of 
64 electrodes from each cortical implant. The firmware enabled the selection 
of 32 electrodes within the 64 electrodes of each implant. The red dots indicate 
the 32 selected electrodes from each implant based on the amount of identified 
movement-related information for each of the 64 electrodes. f, Spectral 
distribution of linear regression weights associated with upper versus lower 
limb movements, highlighting the importance of high sampling density in low 
frequencies compared to high frequencies. This ensemble of features guided 
the parameterization of the decoders. g, Detailed representation of the spatial 
and spectral repartition of weights associated with decoding of the 6 different 
lower limb joint movements.
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Extended Data Fig. 3 | Stability of the decoder enables safe utilization of 
BSI. a, Chronophotography and associated spectrogram, probabilities of left 
and right steps, modulation of muscle activity, stimulation amplitudes, and 
peak probability of step cycles during a sequence involving walking, a 
voluntary pause (30 s, instructed), and resuming walking. The absence of false 
positive detections illustrates the robustness of the BSI. b, The bar plot reports 

the peak probability of walk (active) versus idle state, together with the 
confusion matrices reporting the detected rest versus left and right swing 
states (n = 31 and n = 49 samples for idle and active states respectively, unpaired 
one-tailed t-test ***, p < 0.001). c, Photographs illustrating sit to stand 
capacities without and with the BSI, including bar plots reporting balance 
capacities (scores) measured using the Berg Balance Scale.



Extended Data Fig. 4 | The BSI normalizes gait parameters and supports 
walking on complex terrains. a, Principal component (PC) analysis applied on 
kinematic and muscle activity parameters during walking on a treadmill with 
stimulation alone versus BSI. During stimulation alone conditions, a closed-loop 
controller based on motion sensors attached to the lower limbs determine the 
parameters of stimulation. Each dot represents a gait cycle. The bar plot reports 
the Euclidean distance in the PC space between each sample and the centroid of 
the healthy steps. (n = 119, n = 30 and n = 61 steps for healthy, EES only and BSI 
respectively, unpaired one-tailed t-test ***, p < 0.001). Compared to stimulation 
alone, the BSI enabled walking with gait features that were closer to those 
quantified in healthy individuals. This similitude is highlighted in the bar plots, 
which report the mean values of kinematic parameters with a high factor 
loading on PC1. b, Quantitative measure of step length while walking with 

crutches. Steps below 10 cm are considered failed as illustrated in the stick plot 
diagram. EES only condition showed significantly shorter step length due to 
increase of failed steps (n = 26, n = 43 for EES only and BSI respectively, 
Mann-Whitney U test one-tailed t-test **, p < 0.01). c, Photographs illustrating 
walking capacities, together with bar plots that report quantifications of 
performances during the execution of various walking paradigms, including 
walking up and down a ramp, climbing stairs, and walking with crutches 
overground. d) Walking on changing terrains with obstacles and different 
textures (6 surfaces), as illustrated in the scheme on the left. Conventions are 
the same as in previous figures. Decoding stability is shown by overlayed 
probability curves of right hip flexions over consecutive steps (n = 13 steps, Left 
accuracy = 0.89 +/− 0.1 std, w = 2.06 s +/− 0.6 s std), and Left accuracy (n = 13 
steps, accuracy = 0.91 +/− 0.1 std, w = 2.06 s +/− 0.4 s std).
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Long term stability of the BSI supporting walking.  
a, Recordings of the resting state were acquired regularly to evaluate the 
evolution of signal quality over time. Raw traces and power spectrum of an 
ECoG signal measured from a selected electrode are shown to illustrate the 
stability of the recorded signals. The plot reports the mean values of the power 
spectrum quantified over 2 min of resting state recorded at regular intervals 
over a period of nearly one year, showing a steady yet negligible decrease in 
signal quality over time (−0.03 dB/day). b, Plots reporting principal component 
analysis of gating coefficients from all the models used for supporting walking 
over the entire duration of the study. The size of each data point captures the 
relative time during which each model was used. c, Plots reporting the range of 

stimulation amplitudes and frequencies used over the entire course of the 
neurorehabilitation program, highlighting the robustness of the BSI over 
nearly six months of use. d, Spectrograms and decoding performance together 
with modulation of stimulation amplitude (relative) during self-paced walking 
enabled by the BSI. Plots report the probability of left and right hip flexion 
events (swing) measured over consecutive steps, and repeated at regular 
intervals over the entire time course of the clinical trial. e, Median 
spectrograms around the right hip flexion attempts during different time 
periods along training (n = 100 attempts in each period). The average rectified 
modulations show a significant increase with time (n = 64 electrodes, 
R2 = 0.68, p < 0.001).
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Extended Data Fig. 6 | BSI supporting control over isolated lower limb movements. The same model was used to enable the participant to exert control over 6 
joints from both sides during two sessions apart from 2 months. Conventions are the same as in previous figures.



Extended Data Fig. 7 | Design and configuration of the BSI for independent 
use at home. a, An integrated walker was designed and fabricated to incorporate 
the different hardware composing the BSI, thereby maximizing the practicability 
of the technological platform for use at home. The system is battery-powered 
and can operate autonomously for approximately 2 h without any supervision.  
b, Sequence showing the different steps to configure the BSI, including the 
positioning of the communication headset, uploading of a BSI program, 
monitoring of signal quality to ensure appropriate placement of the antennas, 

and adjusting the minimum and maximum amplitudes of the stimulation. The 
participant has been using the BSI independently to support neurorehabilitation 
and daily life activities over nearly one year. Positioning the hardware and 
configuring the BSI require approximately 5 min. c, Usage log and performance 
quantification of the participant after the main phase of the study as a 
cumulative number of decoded steps and cumulative time of use over a period of 
181 day, i.e. since the participant returned to his home.
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Extended Data Table 1 | WIMAGINE device specifications

Analog front-end: CINESIC32 (x2) Wireless power supply

Number of channels 64 Frequency 13.56MHz

Adjustable Gain 1, 5, 280, 990, 1370 (adjustable for each electrode) Power Adjustable up to 100mW

Detection range +/- 1.3mV (with Gain 990) WIMAGINE Implant

Bandwidth 0.5-292Hz Norm Class III DMIA : EN 45502-1

Resolution 12bits - ADC architecture : SAR Typical power requirement 25mA / 3.3V

Noise level <2.5µV RMS (with Gain 990 on BW 0.5-292Hz)

Sampling rate 586Hz or 1kHz adjustable Electrode open area 2.0mm in diameter

Microcontrolers and Sensors Electrode spacing 4.0mm and 4.5mm

Microcontroler MSP430F2618-EP (Texas Instrument)

Sensors
Accelerometer, temperature, power consumption, 

voltage

UHF link

Component Transciever Microsemi ZL70102 (Zarlink)

Frequency 402-405MHz

Data rate - range 250kb/s - 5cm (2FSK)



Extended Data Table 2 | Epidural electrical stimulation system specifications

ACTIVA RC 37612, Medtronic Paddle lead Specify® SureScan® MRI 5-6-5 Lead Kit 977C190, Medtronic

Number of channels 16 Electrode dimensions 1.5 mm x 4.0 mm

Stimulation amplitude 0 - 25.5 mA (0.1mA resolution) Paddle width 10 mm

Stimulation frequency

(with modi�ied �irmware)
0.1 - 500 Hz Spacing 1 mm x 4.5mm

Pulse width 60-450 µs Paddle length 64.2 mm
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Extended Data Table 3 | Observational gait analysis

OBSERVATIONAL GAIT ANALYSIS References 

Parameter Criterion L R 

Head position 

Looks mostly straight ahead 

Alternates with look straight and to the floor 

Looks mostly to the floor 

2 

1 

0 

Translated into English, added one point about alternating head 

position 

Trunk Posture 

(Flexion/Extension) 

Upright position 

Trunk flexes or extends slightly during stepping 

Trunk flexes or extends more than 30° 

2 

1 

0 

G.A.I.T. 

Simplified “until 30°” to “slightly” and use it during all gait phases 

Trunk Posture (Lateral Lean) 

Upright position 

Trunk leans slightly to the right or left 

Trunk leans to the right or left more than 30° 

2 

1 

0 

G.A.I.T. 

Simplified “until 30°” to “slightly” and use it during all gait phases 

Pelvic Position (Stance Phase) 

Normal (no Trendelenberg sign) 

Mild pelvic drop on contralateral side. 

Severe or abrupt pelvic drop on contralateral side. 

2 

1 

0 

2 

1 

0 

G.A.I.T. 

Pelvic Position (Swing Phase) 

Normal (relatively level pelvis or slightly lower on swing side). 

Mild hip hiking. 

Moderate to severe hip hiking. 

2 

1 

0 

2 

1 

0 

G.A.I.T. 

Weight shift 

Shifts weight to stance limb, only uses parallel bars for security 

Leans slightly on arms and parallel bars to weight shift 

Leans heavily on arms and parallel bars to weight shift 

2 

1 

0 

2 

1 

0 

SCI-FAI 

Added “only uses Parallel bars for security”plus another point to 

distinguish the use of arms 

Step Continuity 
Steps appear continuous 

Stopping or discontinuity between steps 

1 

0 

1 

0 
Tinetti Test 

Step rhythm (relative time 

needed to advance swing limb) 

At heel strike of stance limb, the swing limb: 

Begins to advance in <1 second or 

Requires 1–3 seconds to begin advancing or 

Requires >3 seconds to begin advancing 

2 

1 

0 

2 

1 

0 

SCI-FAI 

Step height 

Toe clears floor throughout swing phase or 

Toe drags at initiation of swing phase only or 

Toe drags throughout swing phase 

2 

1 

0 

2 

1 

0 

SCI-FAI 

Step Length 

Swing heel placed forward of stance toe or 

Swing toe placed forward of stance toe or 

Swing toe placed rearward of stance toe 

2 

1 

0 

2 

1 

0 

SCI-FAI 

Step Symmetry 
Right and left step length appear equal 

Right and left step length not equal (estimate) 

1 

0 
Tinetti Test 

Step width 

Swing foot clears stance foot on limb advancement 

Stance foot obstructs swing foot on limb advancement 

Final foot placement does not obstruct swing limb 

Final foot placement obstructs swing limb 

1 

0 

1 

0 

1 

0 

1 

0 

SCI-FAI 

Foot contact 

Heel contacts floor before forefoot or 

Foot flat first contact with floor 

Forefoot contacts floor before heel 

2 

1 

0 

2 

1 

0 

SCI-FAI 

added another point to distinguish foot flat and forefoot contact 



Extended Data Table 4 | Psychosocial Impact of Assistive Devices Scale (PIADS) questionnaire during the home-use phase

Decrease Increase

-3 -2 -1 0 1 2 3

1) competence x

2) happiness x

3) independence x

4) adequacy x

5) confusion x

6) ef�iciency x

7) self-esteem x

8) productivity x

9) security x

10) frustration x

11) usefulness x

12) self-con�idence x

13) expertise x

14) skillfulness x

15) well-being x

16) capability x

17) quality of life x

18) performance x

19) sense of power x

20) sense of control x

21) embarrassment x

22) willingness to take chances x

23) ability to participate x

24) eagerness to try new thing x

25) ability to adapt to the activities of daily living x

26) ability to take advantage x
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